Phi meson propagation in a hot hadronic gas

Luis Alvarez-Ruso^a, Volker Koch^b

^a Justus-Liebig-Universität Giessen, Germany

^bLawrence Berkeley National Laboratory

Introduction

Quark-Gluon Plasma

Enhanced production of strange quarks

Enhancement of strange particles $(K, \phi, \Lambda, \Omega)$

Introduction

- ϕ is a nice probe: \leftarrow A. Shor, P.R.L. 54 (1985) 1122
 - ϕ production in pp and πp is OZI suppressed
 - Coalescence: $s\bar{s} \rightarrow \phi$

 - it can be detected using both kaon pairs (K^+K^-) and dileptons $(e^+e^-, \mu^+\mu^-)$

Introduction

• Widely accepted that ϕ 's have a large mean free path in a hot hadronic matter

For example (K. Haglin, N.P.A 584 (1993) 719):

$$\lambda$$
 ($T=200$ MeV) = 4.4 fm λ ($T=150$ MeV) = 14 fm

Phenomenological Lagrangians with couplings extracted from observed partial decay rates

Many mechanisms that include vertices allowed by the symmetries of QCD, like ϕK^*K or ρK^*K^* , are not taken into account.

Hidden Local Symmetry Lagrangian

• Vector mesons ρ , ω , K^* , ϕ are the gauge bosons of the hidden local U(3) $_{\rm V}$ symmetry.

M. Bando, T. Kugo, K. Yamawaki, P.Rep. 164 (1988) 217

• Spontaneous symmetry breaking $\Rightarrow m_V$

$$m_V^2 = 2g^2 f_\pi^2 \;, \qquad g^2 \leftarrow VPP \; \text{coupling}$$

- Anomalous part of the Lagrangian $\Rightarrow VVP$ vertex
- Kinetic term for vector mesons ⇒
 VVV and VVVV vertices:

• Relevant vertices: *VPP*, *VVP*, *VVV*, *VVVV*

• No direct couplings of ϕ with π , ρ or ω (OZI rule)

No.	Reaction	Channels
1.1	$\phi + \pi \rightarrow K + K$	$t(K^*)$
1.2	$\phi + \pi \rightarrow K + K^*$	$t(K,K^*)$
1.3	$\phi + \pi \to K^* + K^*$	$t(K,K^*)$

No.	Reaction	Channels
2.1	$\phi + K \to \pi + K$	$\mathbf{s,t}(K^*)$
2.2	$\phi + K \rightarrow \rho + K$	$s,t(K,K^*)$
2.3	$\phi + K \rightarrow \omega + K$	$\mathbf{s,t}(K,K^*)$
2.4	$\phi + K \rightarrow \phi + K$	$\mathbf{s,t}(K,K^*)$
2.5	$\phi + K \to \pi + K^*$	$\mathbf{S}(K,K^*)$, $\mathbf{t}(K^*)$
2.6	$\phi + K \to \rho + K^*$	$s,t(K,K^*)$
2.7	$\phi + K \to \omega + K^*$	$\mathbf{s,t}(K,K^*)$
2.8	$\phi + K \to \phi + K^*$	$\mathbf{s,t}(K,K^*)$

No.	Reaction	Channels
3.1	$\phi + \rho \rightarrow K + K$	$t(K,K^*)$
3.2	$\phi + \rho \rightarrow K + K^*$	$t(K,K^*)$
3.3	$\phi + \rho \to K^* + K^*$	$t(K,K^*)$, c

No.	Reaction	Channels
4.1	$\phi + \omega \to K + K$	$t(K,K^*)$
4.2	$\phi + \omega \to K + K^*$	$t(K,K^*)$
4.3	$\phi + \omega \to K^* + K^*$	$t(K,K^*)$, c

No.	Reaction	Channels
5.1	$\phi + K^* \to \pi + K$	$\mathbf{S}(K^*)$, $\mathbf{t}(K,K^*)$
5.2	$\phi + K^* \to \rho + K$	$\mathbf{s,t}(K,K^*)$
5.3	$\phi + K^* \to \omega + K$	$\mathbf{s,t}(K,K^*)$
5.4	$\phi + K^* \to \phi + K$	$\mathbf{s,t}(K,K^*)$
2.5	$\phi + K^* \to \pi + K^*$	$\mathbf{s,t}(K,K^*)$
5.6	$\phi + K^* \to \rho + K^*$	$\mathbf{s,t}(K,K^*),\mathbf{c}$
5.7	$\phi + K^* \to \omega + K^*$	$\mathbf{s,t}(K,K^*),\mathbf{c}$
5.8	$\phi + K^* \to \phi + K^*$	$\mathbf{s,t}(K,K^*),\mathbf{c}$

No.	Reaction	Channels
6.1	$\phi + \phi \rightarrow K + K$	$t(K,K^*)$
6.2	$\phi + \phi \to K + K^*$	$t(K,K^*)$
6.3	$\phi + \phi \to K^* + K^*$	$t(K,K^*)$, c

Collision rates

Collision rates

• Why $\Gamma_{coll}^{(K^*)} > \Gamma_{coll}^{(K)}$?

$$\left. \frac{n_{K^*}}{n_K} = \frac{3m_{K^*}^2 K_2(m_{K^*}/T)}{m_K^2 K_2(m_K/T)} \right|_{T=200~\mathrm{MeV}} = 0.77 \leftarrow \begin{array}{c} \text{not so} \\ \text{small} \end{array}$$

- Large contributions to $\sigma_{\phi K^*}$ from: $\phi + K^* \to \rho + K^* \\ \phi + K^* \to \omega + K^* \\ \phi + K^* \to \phi + K^*$
- Inelastic reactions account for > 80 % of Γ_{coll}

Mean free path

Very short mean free path!

Time evolution of ϕ number in an expanding hadronic fireball

Assumptions:

- An ideal gas of π , K, ρ , ω , K^*
- Kinetic equilibrium for all species including ϕ 's
- Chemical equilibrium for all species except φ's
- Cylindrical symmetry and boost invariance
- Longitudinal and radial transverse expansion
- Entropy conservation
- Rate equation:

$$\partial_{\mu} \left(n_{\phi} u^{\mu} \right) = -\Gamma \left(n_{\phi} - n_{\phi}^{eq} \right), \ \Gamma = \Gamma_{coll}(T) + \Gamma_{dec}(T)$$

Different hadronization temperatures

Different flow velocities

Conclusions

- ϕ meson interaction with a hot hadronic gas composed of $\pi, K, \rho, \omega, K^*, \phi$ has been studied using the Hidden Local Symmetry model.
- Large ϕ collision rates with K, ρ and specially K^* .
- Short mean free path: $1 \le \lambda \le 5$ fm at $200 \ge T \ge 150$ MeV.
- High collision rates cause a reduction of the φ number.
- $N/N_0 \sim 5-45$ % depending on hadronization and freezeout temperatures, flow velocity and chemical potentials.